Control of solidification of non-conducting materials using tailored magnetic fields
نویسندگان
چکیده
The structure of fluid flow in a solidifying melt plays a critical role in the quality/properties of the solid. It follows that by controlling the flow behavior, the final solidified material can be suitably affected. Most of the magnetic control approaches used depend on the variation of the Lorentz force for suppression of flow and are limited to conducting materials alone. The application of a magnetic gradient gives rise to an additional force that can be used to affect the melt flow of any material. In this work, a computational method for the design of solidification of a nonconducting material is addressed such that diffusion-dominated growth is achieved by the suppression of convection. The control parameter in the design problem is the time history of the imposed magnetic field. The design problem is posed as an unconstrained optimization problem. The adjoint method for the inverse design of continuum processes is adopted. Examples of designing the time history of the imposed magnetic field for the directional growth of various non-conducting materials are presented to demonstrate the developed formulation. PACS: 02.30.Zz; 47.65.+a; 47.62.+q; 45.10.Db
منابع مشابه
Melt Flow Control Using Magnetic Fields and Magnetic Field Gradients
Solidification of materials to near net shape is one of the most commonly used and economical methods of manufacturing. Different industries impose different restrictions and design objectives on the solidification process. For example, single crystal growth requires a planar growth front whereas casting requires homogenous material distribution. There are various techniques to control the flow...
متن کاملOn the control of solidification using magnetic fields and magnetic field gradients
Solidification from the melt to near net shape is a commonly used manufacturing technique. The fluid flow patterns in the melt affect the quality of the final product. By controlling the flow behavior, the final solidified material can be suitably affected. Most of the magnetic field approaches to melt flow control rely on the application of a constant magnetic field. A constant magnetic field ...
متن کاملInfluence of External Static Magnetic Fields on Properties of Metallic Functional Materials
Influence of external static magnetic fields on solidification, solid phase transformation of metallic materials have been reviewed in terms of Lorentz force, convection, magnetization, orientation, diffusion, and so on. However, the influence of external static magnetic fields on properties of metallic functional materials is rarely reviewed. In this paper, the effect of static magnetic fields...
متن کاملControl of nonmagnetic particles using a magnetic field.
A force and/or torque are induced in a material under the imposition of a magnetic field. Their magnitudes are different from those acting on the surrounding materials because of the difference in their physical properties. Therefore, a magnetic field is a powerful tool for controlling a second phase in a mother phase such as particles suspended in a liquid. In this paper, we focus on two proce...
متن کاملاندازه گیری غیریکنواختی امواج رادیوئی در ام آر آی
Introduction: Non-uniformity is one of the most important parameters affecting MRI images which can lead to harmful effects in the diagnosis and analysis of qualitative and quantitative methods. The present study introduced a method for measuring RF non-homogeneity in MRI systems. Methods and Materials: To verify the uniformity of B0 and B1 fields, a cylindrical phantom with a diameter of 24 c...
متن کامل